Optical Imaging of Large Gyroid Grains in Block Copolymer Templates by Confined Crystallization
نویسندگان
چکیده
Block copolymer (BCP) self-assembly is a promising route to manufacture functional nanomaterials for applications from nanolithography to optical metamaterials. Self-assembled cubic morphologies cannot, however, be conveniently optically characterized in the lab due to their structural isotropy. Here, the aligned crystallization behavior of a semicrystalline-amorphous polyisoprene-b-polystyrene-b-poly(ethylene oxide) (ISO) triblock terpolymer was utilized to visualize the grain structure of the cubic microphase-separated morphology. Upon quenching from a solvent swollen state, ISO first self-assembles into an alternating gyroid morphology, in the confinement of which the PEO crystallizes preferentially along the least tortuous pathways of the single gyroid morphology with grain sizes of hundreds of micrometers. Strikingly, the resulting anisotropic alignment of PEO crystallites gives rise to a unique optical birefringence of the alternating gyroid domains, which allows imaging of the self-assembled grain structure by optical microscopy alone. This study provides insight into polymer crystallization within a tortuous three-dimensional network and establishes a useful method for the optical visualization of cubic BCP morphologies that serve as functional nanomaterial templates.
منابع مشابه
Gyroid-Forming Diblock Copolymers Confined in Cylindrical Geometry: A Case of Extreme Makeover for Domain Morphology
The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Abstract The self-assembly of gyroid-forming diblock copolymers confined in cylindrical geometry is studied using a combination of computer simulations and experiments. The simulations, based on a system qualitatively representative of poly(styrene-b-isoprene), are performed wi...
متن کاملUniversity of Groningen Double Gyroid Network Morphology in Supramolecular Diblock Copolymer Complexes
The double gyroid network morphology has been the focus of extensive research efforts as one of the most appealing block copolymer structures for practical applications. We performed an extensive study of the phase behavior of the supramolecular complex PS-b-P4VP(PDP)x to develop a systematic route to its double gyroid morphology. The morphological characterization of complexes was accomplished...
متن کاملStructure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales.
Complex three-dimensional biophotonic nanostructures produce the vivid structural colors of many butterfly wing scales, but their exact nanoscale organization is uncertain. We used small angle X-ray scattering (SAXS) on single scales to characterize the 3D photonic nanostructures of five butterfly species from two families (Papilionidae, Lycaenidae). We identify these chitin and air nanostructu...
متن کاملCrystallization and Melting of Poly(ethylene Oxide) Confined in Nanostructured Particles with Cross-linked Shells of Polybutadiene
Small fixed aggregates of a poly(ethylene oxide)-block-polybutadiene diblock copolymer (PEO-b-PB) in THF solution were obtained by adding a selective solvent for PB blocks, followed by cross-linking the PB shells. The morphologies of the nanostructured particles with a cross-linked shell were investigated by atomic force microscopy and transmission electron microscopy. The average behaviors of ...
متن کاملGiant Gyroid and Templates from High-Molecular-Weight Block Copolymer Self-assembly
We present a feasible approach to the direct development of three-dimensionally (3D) bicontinuous gyroid (GYR) nanostructure in high-molecular-weight, composition-controlled polystyrene-b-poly(methyl methacrylate) (PS-b-PMMA) films. The use of a neutral solvent vapor to elaborately control the swelling of block copolymer (BCP) films is essential to generate a direct pathway to GYR (or giant GYR...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 50 شماره
صفحات -
تاریخ انتشار 2017